Diagnosis and treatment Protocol of COVID-19

(Trial Version 7)
Updated on March 3, 2020
Released by National Health Commission &
State Administration of Traditional Chinese Medicine

Gui-Qiang Wang, MD

Department of Infectious Diseases
Peking University First Hospital

Content

- 1. Etiological Characteristics
- 2. Epidemiological Characteristics
- 3. Pathological changes
- 4. Clinical Characteristics
- 5. Case Definitions
- 6. Clinical Classification
- 7. Clinical early warning indicators of severe and critical cases
- 8. Differential Diagnosis
- 9. Case Finding and Reporting
- 10. Treatment
- 11. Discharge criteria and after-discharge considerations
- **12.** Patients Transportation Principles
- 13. Nosocomial Infection Prevention and Control

Epidemiological characteristics

(1) The source of infection.

- The COVID-19 patients;
- Asymptomatic infected people can also be a source of infection.

(2) Route of transmission

- Respiratory droplets and close contact are the main routes of transmission.
- There is the possibility of aerosol transmission in a relatively closed environment for a long-time exposure to high concentrations of aerosol.
- As the novel coronavirus can be isolated in feces and urine, attention should be paid to feces or urine contaminated environment that leads to aerosol or contact transmission.

(3) susceptible population.

• All the population are generally susceptible.

Pathological changes

Pathological findings from limited autopsies and biopsies gave the evidence that COVID-19 mainly causes lung damage.

1. Lungs

- The varying degrees of lungs solid changes.
- Alveolar damage involves fibro myxoid exudation and hyaline membrane formation.
- The exudates are composed of monocytes and macrophages.
- Alveolar interstitium is marked with vascular congestion and edema, infiltration of monocytes and lymphocytes, and vascular hyaline thrombi.
- The lungs are laden with hemorrhagic and necrotic foci, hemorrhagic infarction.
- The bronchi are filled with mucus and mucus plugs.
- On electron microscopy, cytoplasmic virions are observed in the bronchial epithelium and type II alveolar epithelium.

Pathological changes

2. Spleen, Hilar lymph nodes and bone marrow

- The spleen is evidently shrunk with Lymphocytopenia and focal hemorrhage and necrosis, and macrophage proliferation and phagocytosis.
- Lymph nodes are found with sparse lymphocytes and occasional necrosis.
- CD4+ and CD8+ T cells are present in reduced quantity in the spleen and lymph nodes.
- Pancytopenia is identified in bone marrow.

Clinical manifestations

- The incubation period: the incubation period is 1-14 days, mostly 3-7 days.
- Clinical Features:
 - Fever, dry cough, fatigue as the main performance.
 - In severe cases, dyspnea or hypoxemia usually occur one week after the onset of the disease.
- The severe or critical case may have low fever, or even no fever.
- The elderly patients and those with chronic underlying diseases have poor prognosis.

Laboratory test

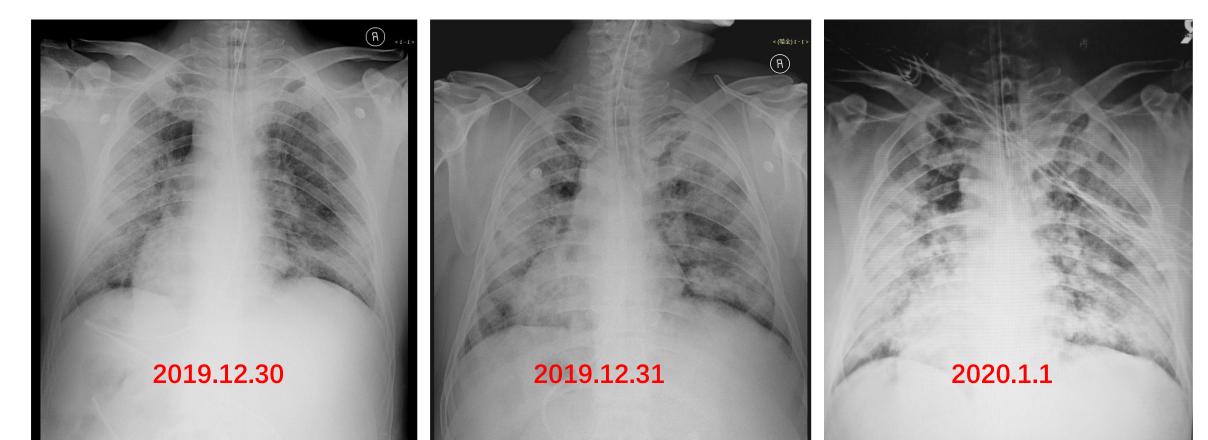
- In most patients, white blood cells was normal or decreased, with the lymphocyte count decreased.
- C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were elevated.
- Some patients show an increase in liver enzymes, lactate dehydrogenase (LDH), muscle enzymes and myoglobin.
- In severe cases, D-dimer increased progressively.
- Elevated troponin is seen in some critically ill patients.
- Severe and critical patients often have elevated inflammatory factors.

Virological and serological findings

Virological detection:

- Viral RNA can be detected in nasopharyngeal swabs, sputum, lower respiratory tract secretions, blood, feces and other specimens using RT-PCR or NGS.
- Recommend to collect lower respiratory tract samples (sputum or air tract extraction) to increase the sensitivity.

Serological test:


- Viral specific IgM antibody becomes detectable around 3-5 days after onset;
- Viral specific IgG antibody reaches a titration of at least 4-fold increase during convalescence compared with the acute phase.

Chest imaging

- In the early stage, there were multiple spotted shadows and interstitial changes, which were obvious in the extraneous lung.
- Further, multiple ground-glass shadows and infiltration shadows were found in both lungs.
- Lung consolidation was found in severe cases.

X-ray

- Male, 44 years old, fever, fatigue, treatment progress
- infiltration shadows appear in the lungs, often initially close to the pleura, and gradually develop toward the center


Progressive CT findings

8 dyas after onset subpleural distribution groundglass shadows

20 dyas after onset
The infiltration lesion
develops to the
center and presents a
consolidation

Diagnostic criteria

1. suspected cases:

- Epidemiological history
 - ① History of travel to or residence in communities where cases reported within 14 days prior to the onset of the disease;
 - 2 In contact with viral RNA positive people within 14 days prior to disease onset;
 - ③ In contact with patients who have fever or respiratory symptoms from communities confirmed cases reported within 14 days before disease onset;
 - 4 Clustered cases (2 or more cases with fever and/or respiratory symptoms in a small area such as families, offices, school room etc. within 2 weeks).

Diagnostic criteria

1. suspected cases.

- Clinical features
 - 1 fever and/or respiratory symptoms;
 - ② imaging characteristics;
 - ③ The white blood cells was normal or decreased, with lymphocyte decreased.

Diagnostic criteria for suspected cases:

- Any one of the epidemiological history with any two of the clinical features.
- All three clinical features.

Diagnostic criteria

2. Confirmed cases:

- Suspected cases with one of the following virological or serological evidences:
 - Real-time fluorescent RT-PCR indicates positive for novel coronavirus RNA;
 - Viral gene sequence is highly homologous to known novel coronaviruses;
 - Viral specific IgM and IgG are detectable in serum;
 - Viral specific IgG is detectable from negative to positive, or
 - Viral specific IgG antibody reaches a titration of at least 4-fold higher in the recovery stage than in the acute stage.

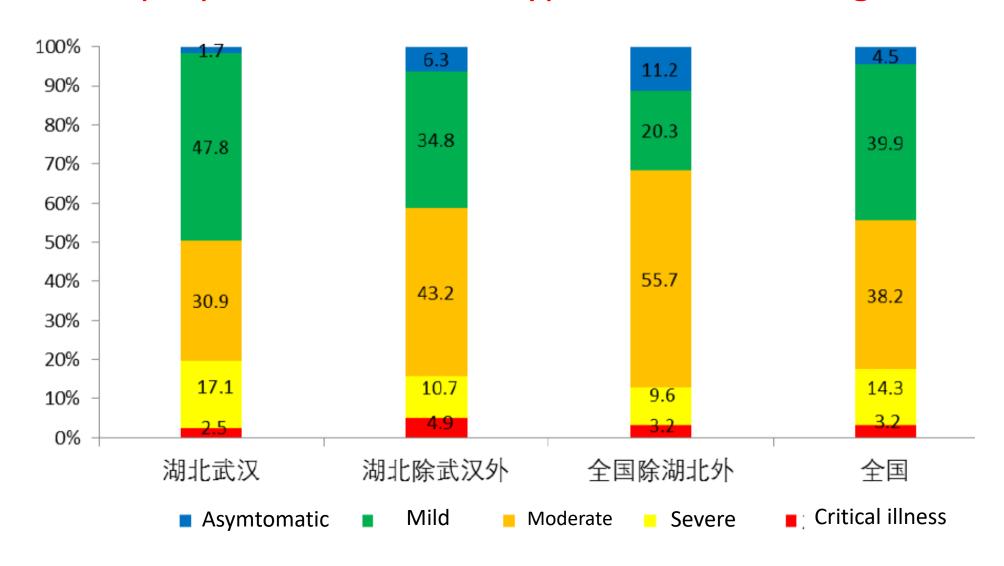
Clinical Types

(1) Mild:

The clinical symptoms were mild, and there was no sign of pneumonia on imaging.

(2) Moderate:

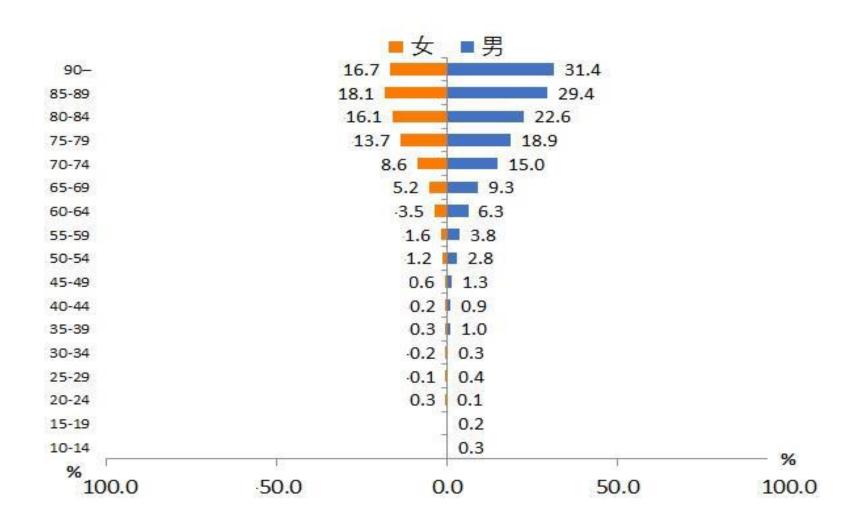
Showing fever and respiratory symptoms with radiological findings of pneumonia.


(3) Severe. In accordance with any of the following:

- 1. Shortness of breath (RR \geq 30 breaths/min);
- 2. In resting state, oxygen saturation ≤ 93%;
- 3. Arterial partial pressure of oxygen (PaO₂)/ fraction of inspired oxygen (FiO₂) \leq 300mmHg (ImmHg=0.133kPa).
- 4. Cases with chest imaging showed obvious lesion progression more than 50% within 24-48 hours.


(4) Critical: One of the following:

- 1. Respiratory failure, requiring mechanical ventilation;
- 2. Shock;
- 3. With other organ failure that requires ICU care.


The proportion of clinical types in different regions

The proportion of severe diseases increases with age

The proportion of deaths in different age groups

Early warning indicators of severe and critical cases

- The peripheral blood lymphocytes decrease progressively;
- Progressively elevation of inflammatory factors, such as IL-6 and Creactive proteins;
- Lactate sustained or progressive elevation;
- Lung lesions develop rapidly in a short period of time.

General management

- Rest and symptomatic support therapy; sufficient caloric; water and electrolyte;
- Closely monitoring vital signs and oxygen saturation.
- Monitoring lab test: blood routine result, urine routine result, c-reactive protein (CRP), biochemical indicators (liver enzyme, myocardial enzyme, renal function etc.), coagulation function, arterial blood gas analysis, chest imaging and cytokines detection if necessary.
- Early oxygen therapy and airway drainage.

General management

Antiviral therapy:

Some drugs that are already on market can be tried to treat COVID-19 and the efficacy of the drugs need to be evaluated in clinical application.

- Alpha-interferon: 5 MU, atomization inhalation twice daily;
- Kaletra (Lopinavir/ritonavir)
- Chloroquine phosphate
- Arbidol:
- Antibiotic drug treatment: Rational use of antimicrobial agents.

Treatment of severe and critical cases

- Treatment principle: On the basis of symptomatic treatment, the prevention of complications, treatment of underlying diseases, prevention of secondary infections, and timely organ function support should be reinforced.
 - 1. Respiratory support:
 - 2. Circulatory support:
 - 3. Renal failure and renal replacement therapy:
 - 4. Convalescent plasma treatment:
 - 5. Blood purification treatment:
 - 6. Immunotherapy:
 - 7. Other therapeutic measures

Respiratory support: Oxygen therapy

- Nasal cannulas or masks for oxygen inhalation:
- High-flow nasal-catheter oxygenation or noninvasive mechanical ventilation:
 - When respiratory distress and/or hypoxemia cannot be alleviated by oxygen therapy.
- Invasive mechanical ventilation:
 - If conditions do not improve or even get worse within 1-2 hours.
 - Use closed sputum suction according to the airway secretion, if necessary, administer appropriate treatment based on bronchoscopy findings.
- Rescue therapy:
 - Pulmonary reconstruction is recommended for patients with severe ARDS.
 - With sufficient human resources, prone position ventilation should be performed for more than 12 hours per day.
 - If prone position ventilation did not work, extracorporeal membrane oxygenation (ECMO) should be considered as soon as possible.

Convalescent plasma treatment:

Indications

- Patients with rapid disease progression, severe and critical illness.
- The course of illness should not exceed three weeks;
- The nucleic acid test was positive or other evidence of presence of viruses;

Infusion dose

The usual infusion dose is 200-500 ml (4-5 ml/kg), two times

Blood purification treatment:

- It can be used for the treatment of severe and critical cases in the early and middle stages of cytokine storm.
- Including plasma exchange, absorption, perfusion and blood/plasma filtration;
- To remove inflammatory factors and block "cytokine storm".

Other therapeutic measures:

Glucosteroid:

- For patients with progressive deterioration of oxygenation indicators, rapid
 progress in imaging and excessive activation of the body's inflammatory response
- In a short period of time (3 to 5 days).
- It is recommended using methylprednisolone 1-2 mg/kg/day.
- Note that a larger dose of glucocorticoid will delay the removal of coronavirus due to immunosuppressive effects.

Intestinal microecological regulators:

To maintain intestinal microecological balance and prevent secondary bacterial infections.

Traditional Chinese Medicine treatment

- 1. Clinical manifestations during medical observation
 - huoxiang zhengqi capsule (pill, water, oral liquid)
 - jinhua qinggan granules, lianhua qingwen capsules (granules), shufeng jiedu capsules (granules)

2. Clinical treatment phase (confirmed cases)

Conclusion

- COVID-19 is an emerging infectious disease, that many aspects still need to be elucidated, including the pathogenesis, pathology.
- Early diagnosis and early treatment is critical.
- Effective oxygen treatment are very important.
- We will update the protocol with increased understanding of the clinical manifestations and pathology of the disease, and the accumulation of experience in diagnosis and treatment.

Thanks for your attention!

Email: john131212@sina.com

Gui-Qiang Wang, MD

Professor, Chief physician

Director, Department of infectious diseases,

Director, Center for liver disease, Peking University first hospital;

President, Society of Infectious Diseases, Chinese Medical Association;

Chairman, Working Committee for Rational Use of Antimicrobial Agents, Chinese hospital association;

Vice Chairman, Infectious Disease Physicians Branch, Chinese Medical Physician Association

Member, National Immunization Program Expert Advisory Committee;

Member, The New Coronavirus Pneumonia Expert Group on Medical Treatment of National Health Commission;

Member, The New Coronavirus Pneumonia Expert Group on Medicine of Ministry of Science and Technology;

Vice President, General Practitioner Education College, Chinese Medical Association.